Pet Breed Classification

Multi-class classification using FastAI
Author

Nenad Bozinovic

Published

March 9, 2023

Credits: Practical Deep Learning for Coders book by Jeremy Howard and Sylvain Gugger.

Data

Let’s first download the data:

Running on Quadro P5000 16GB.

from fastai.vision.all import *
device = 'gpu'

Data Preparation

path = untar_data(URLs.PETS)
100.00% [811712512/811706944 00:09<00:00]
path.ls()
(#2) [Path('/root/.fastai/data/oxford-iiit-pet/images'),Path('/root/.fastai/data/oxford-iiit-pet/annotations')]
(path/'images').ls()
(#7393) [Path('/root/.fastai/data/oxford-iiit-pet/images/american_bulldog_56.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/Siamese_61.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/english_cocker_spaniel_66.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/shiba_inu_55.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/scottish_terrier_68.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/Abyssinian_153.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/Ragdoll_57.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/pug_182.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/Siamese_182.jpg'),Path('/root/.fastai/data/oxford-iiit-pet/images/newfoundland_100.jpg')...]
fname = (path/'images').ls()[0]
fname
Path('/root/.fastai/data/oxford-iiit-pet/images/american_bulldog_56.jpg')

If we want to extract the breed itself from the name we can use regex:

m = re.match(r"(.+)_\d+.jpg", fname.name)
breed = m.group(1)
breed
'american_bulldog'

item_tfms is applied to all images. Here it resizes images to some large value first.

batch_tfms is applied only on mini-batches (on GPU if set as device). Here it crops and scales images. Note that validation set does not get augmented, only gets resized.

pets = DataBlock(blocks= (ImageBlock, CategoryBlock),
                 get_items=get_image_files,
                 splitter=RandomSplitter(seed=42),
                 get_y=using_attr(RegexLabeller(r"(.+)_\d+.jpg$"), 'name'),
                 item_tfms=Resize(460),
                 batch_tfms=aug_transforms(size=224, min_scale=0.75))
pets.summary(path/'images')
Setting-up type transforms pipelines
Collecting items from /root/.fastai/data/oxford-iiit-pet/images
Found 7390 items
2 datasets of sizes 5912,1478
Setting up Pipeline: PILBase.create
Setting up Pipeline: partial -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}

Building one sample
  Pipeline: PILBase.create
    starting from
      /root/.fastai/data/oxford-iiit-pet/images/pug_130.jpg
    applying PILBase.create gives
      PILImage mode=RGB size=300x225
  Pipeline: partial -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}
    starting from
      /root/.fastai/data/oxford-iiit-pet/images/pug_130.jpg
    applying partial gives
      pug
    applying Categorize -- {'vocab': None, 'sort': True, 'add_na': False} gives
      TensorCategory(29)

Final sample: (PILImage mode=RGB size=300x225, TensorCategory(29))


Collecting items from /root/.fastai/data/oxford-iiit-pet/images
Found 7390 items
2 datasets of sizes 5912,1478
Setting up Pipeline: PILBase.create
Setting up Pipeline: partial -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}
Setting up after_item: Pipeline: Resize -- {'size': (460, 460), 'method': 'crop', 'pad_mode': 'reflection', 'resamples': (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>), 'p': 1.0} -> ToTensor
Setting up before_batch: Pipeline: 
Setting up after_batch: Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Flip -- {'size': None, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask': 'nearest', 'align_corners': True, 'p': 0.5} -> RandomResizedCropGPU -- {'size': (224, 224), 'min_scale': 0.75, 'ratio': (1, 1), 'mode': 'bilinear', 'valid_scale': 1.0, 'max_scale': 1.0, 'mode_mask': 'nearest', 'p': 1.0} -> Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None, 'batch': False}

Building one batch
Applying item_tfms to the first sample:
  Pipeline: Resize -- {'size': (460, 460), 'method': 'crop', 'pad_mode': 'reflection', 'resamples': (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>), 'p': 1.0} -> ToTensor
    starting from
      (PILImage mode=RGB size=300x225, TensorCategory(29))
    applying Resize -- {'size': (460, 460), 'method': 'crop', 'pad_mode': 'reflection', 'resamples': (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>), 'p': 1.0} gives
      (PILImage mode=RGB size=460x460, TensorCategory(29))
    applying ToTensor gives
      (TensorImage of size 3x460x460, TensorCategory(29))

Adding the next 3 samples

No before_batch transform to apply

Collating items in a batch

Applying batch_tfms to the batch built
  Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Flip -- {'size': None, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask': 'nearest', 'align_corners': True, 'p': 0.5} -> RandomResizedCropGPU -- {'size': (224, 224), 'min_scale': 0.75, 'ratio': (1, 1), 'mode': 'bilinear', 'valid_scale': 1.0, 'max_scale': 1.0, 'mode_mask': 'nearest', 'p': 1.0} -> Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None, 'batch': False}
    starting from
      (TensorImage of size 4x3x460x460, TensorCategory([29,  7, 14, 25], device='cuda:0'))
    applying IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} gives
      (TensorImage of size 4x3x460x460, TensorCategory([29,  7, 14, 25], device='cuda:0'))
    applying Flip -- {'size': None, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask': 'nearest', 'align_corners': True, 'p': 0.5} gives
      (TensorImage of size 4x3x460x460, TensorCategory([29,  7, 14, 25], device='cuda:0'))
    applying RandomResizedCropGPU -- {'size': (224, 224), 'min_scale': 0.75, 'ratio': (1, 1), 'mode': 'bilinear', 'valid_scale': 1.0, 'max_scale': 1.0, 'mode_mask': 'nearest', 'p': 1.0} gives
      (TensorImage of size 4x3x224x224, TensorCategory([29,  7, 14, 25], device='cuda:0'))
    applying Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None, 'batch': False} gives
      (TensorImage of size 4x3x224x224, TensorCategory([29,  7, 14, 25], device='cuda:0'))
dls = pets.dataloaders(path/"images")
dls.show_batch(nrows=1, ncols=5)

Let’s create learner, and define dataloaders, model, and metrics (optimizer and loss are deducted automatically).

Training

learner = vision_learner(dls, resnet34, metrics=error_rate)
learner.fine_tune(2)
epoch train_loss valid_loss error_rate time
0 0.505711 0.344845 0.109608 00:35
1 0.342231 0.221326 0.073072 00:34
learner.recorder.plot_loss()

We can definitely train more using fine_tune but the error rate seem small so let’s take a look at some predictions:

x, y = dls.one_batch()
y
TensorCategory([ 1, 13, 30, 25, 28, 32, 24,  1, 17, 28, 21, 16, 11,  3, 36, 25,
                34, 30, 13, 21, 15, 24,  0,  9,  0, 27, 31,  2, 18, 25,  4, 14,
                27, 35, 19, 33, 21, 34,  2,  4, 31, 30, 19,  0, 36, 30, 31, 35,
                14, 12, 18,  7,  8, 31, 15, 20, 16, 13, 29,  1, 16,  9, 32, 10],
               device='cuda:0')
preds, class_preds = learner.get_preds(dl=[(x, y)])
print(preds.shape)
print(preds)
class_preds
torch.Size([64, 37])
TensorBase([[1.2718e-02, 7.3877e-01, 1.2443e-05,  ..., 1.4487e-05,
             2.1402e-05, 2.4068e-06],
            [2.1086e-04, 3.4171e-05, 2.3038e-05,  ..., 1.0070e-01,
             3.7866e-04, 1.8155e-05],
            [2.2906e-07, 6.6254e-08, 2.3534e-07,  ..., 1.0171e-07,
             2.4211e-07, 3.6889e-07],
            ...,
            [2.1525e-06, 7.6821e-08, 2.3279e-08,  ..., 1.8256e-07,
             1.4531e-08, 5.4367e-10],
            [4.5686e-10, 1.6017e-08, 2.5129e-09,  ..., 7.3533e-09,
             1.6970e-05, 1.6900e-07],
            [1.7999e-08, 7.1642e-11, 2.4699e-06,  ..., 2.8352e-10,
             1.9007e-09, 1.4708e-09]])
tensor([ 1, 13, 30, 25, 28, 32, 24,  1, 17, 28, 21, 16, 11,  3, 36, 25, 34, 30,
        13, 21, 15, 24,  0,  9,  0, 27, 31,  2, 18, 25,  4, 14, 27, 35, 19, 33,
        21, 34,  2,  4, 31, 30, 19,  0, 36, 30, 31, 35, 14, 12, 18,  7,  8, 31,
        15, 20, 16, 13, 29,  1, 16,  9, 32, 10])

There are 64 samples in a batch, each having a probability of a certain class. The class_preds is just argmax of preds:

preds.argmax(dim=1)
TensorBase([ 1, 13, 30, 25, 28, 32, 24,  1, 17, 28, 21, 16, 11,  3, 36, 25, 34,
            30, 13, 21, 15, 24,  0,  9,  1, 27, 31,  2, 18, 25,  4, 14, 27, 35,
            19, 33, 21, 34,  2,  4, 31, 30, 19,  0, 36, 30, 31, 35, 14, 12, 19,
             7,  8, 31, 15, 20, 16, 13, 29,  1, 16,  9, 32, 10])

So learner deducted this is a multi-category problem, and have decided on nn.CrossEntropyLoss (which is combo of nn.LogSoftmax and nn.NLLLoss). What’s important is to apply nn.CrossEntropyLoss on logits, not on probabilites, so our model should not have softmax layer at the end.

Softmax is a multi-category equivalent of sigmoid. We use it any time when we want to convert logits into probabilites, and we want them to sum up to 1.

Log is important because it’s easier to optimize, since difference between, say, 0.99 and 0.999 is 10 fold, not negligible.

Model interpretation

interp = ClassificationInterpretation.from_learner(learner)
interp.plot_confusion_matrix(figsize=(10,10), dpi=60)

interp.most_confused(min_val=3)
[('Ragdoll', 'Birman', 6),
 ('american_pit_bull_terrier', 'staffordshire_bull_terrier', 6),
 ('Russian_Blue', 'British_Shorthair', 5),
 ('Siamese', 'Birman', 5),
 ('staffordshire_bull_terrier', 'american_bulldog', 5),
 ('staffordshire_bull_terrier', 'american_pit_bull_terrier', 5),
 ('Bengal', 'Egyptian_Mau', 4),
 ('american_bulldog', 'staffordshire_bull_terrier', 4),
 ('basset_hound', 'beagle', 4),
 ('Egyptian_Mau', 'Bengal', 3),
 ('american_pit_bull_terrier', 'american_bulldog', 3),
 ('boxer', 'american_bulldog', 3),
 ('yorkshire_terrier', 'havanese', 3)]

Learning rate finder

Let’s train with some large learning rate (run it for 1 epoch every time with base_lr):

learner = vision_learner(dls, resnet18, metrics=error_rate)
learner.fine_tune(1, base_lr=0.1)
epoch train_loss valid_loss error_rate time
0 2.900633 1.380544 0.409337 00:25
learner.fine_tune(1, base_lr=0.1)
epoch train_loss valid_loss error_rate time
0 2.599579 1.268538 0.391746 00:26
learner.fine_tune(1, base_lr=0.2)
epoch train_loss valid_loss error_rate time
0 5.310261 4.817607 0.616373 00:25

So clearly we are diverging. We can use learning rate finder to deduct the good learning rate:

learner = vision_learner(dls, resnet18, metrics=error_rate)
lr_min = learner.lr_find()

print(f'{lr_min.valley:.2e}')
5.75e-04

Transfer learning

The idea here is the same as before, we replace the last layer, freeze all but that last layer, then train. A version of this is done with the following:

learner.fine_tune??
Signature:
learner.fine_tune(
    epochs,
    base_lr=0.002,
    freeze_epochs=1,
    lr_mult=100,
    pct_start=0.3,
    div=5.0,
    *,
    lr_max=None,
    div_final=100000.0,
    wd=None,
    moms=None,
    cbs=None,
    reset_opt=False,
    start_epoch=0,
)
Source:   
@patch
@delegates(Learner.fit_one_cycle)
def fine_tune(self:Learner, epochs, base_lr=2e-3, freeze_epochs=1, lr_mult=100,
              pct_start=0.3, div=5.0, **kwargs):
    "Fine tune with `Learner.freeze` for `freeze_epochs`, then with `Learner.unfreeze` for `epochs`, using discriminative LR."
    self.freeze()
    self.fit_one_cycle(freeze_epochs, slice(base_lr), pct_start=0.99, **kwargs)
    base_lr /= 2
    self.unfreeze()
    self.fit_one_cycle(epochs, slice(base_lr/lr_mult, base_lr), pct_start=pct_start, div=div, **kwargs)
File:      /usr/local/lib/python3.9/dist-packages/fastai/callback/schedule.py
Type:      method

Where learner.freeze will freeze up to a last layer:

learner.freeze??
Signature: learner.freeze()
Docstring: Freeze up to last parameter group
Source:   
@patch
def freeze(self:Learner): self.freeze_to(-1)
File:      /usr/local/lib/python3.9/dist-packages/fastai/learner.py
Type:      method

learner.fit_one_cycle trains whatever is unfrozen with some scheduler (will study it later):

learner.fit_one_cycle??
Signature:
learner.fit_one_cycle(
    n_epoch,
    lr_max=None,
    div=25.0,
    div_final=100000.0,
    pct_start=0.25,
    wd=None,
    moms=None,
    cbs=None,
    reset_opt=False,
    start_epoch=0,
)
Source:   
@patch
def fit_one_cycle(self:Learner, n_epoch, lr_max=None, div=25., div_final=1e5, pct_start=0.25, wd=None,
                  moms=None, cbs=None, reset_opt=False, start_epoch=0):
    "Fit `self.model` for `n_epoch` using the 1cycle policy."
    if self.opt is None: self.create_opt()
    self.opt.set_hyper('lr', self.lr if lr_max is None else lr_max)
    lr_max = np.array([h['lr'] for h in self.opt.hypers])
    scheds = {'lr': combined_cos(pct_start, lr_max/div, lr_max, lr_max/div_final),
              'mom': combined_cos(pct_start, *(self.moms if moms is None else moms))}
    self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd, start_epoch=start_epoch)
File:      /usr/local/lib/python3.9/dist-packages/fastai/callback/schedule.py
Type:      method
learner = vision_learner(dls, resnet18, metrics=error_rate)
learner.fit_one_cycle(3, 5e-4)
epoch train_loss valid_loss error_rate time
0 2.346319 0.579111 0.176590 00:22
1 1.001505 0.389489 0.131258 00:21
2 0.690984 0.360593 0.121786 00:22
learner.unfreeze()
learner.lr_find()
SuggestedLRs(valley=0.0002290867705596611)

Loss is flat for small LRs because we already trained for 3 epochs.

Discriminative learning rates

Let’s try to train with different learning rates for different layers. We can do it by passing a list (via slice) of learning rates to fit_one_cycle so early layers will have smaller learning rate (these layers learn about major edges) vs later layers (which learn about more specific details faster):

learner = vision_learner(dls, resnet34, metrics=error_rate)
learner.fit_one_cycle(3, 3e-3)
epoch train_loss valid_loss error_rate time
0 1.165250 0.328640 0.099459 00:28
1 0.543935 0.273579 0.094046 00:28
2 0.338364 0.218583 0.070365 00:28
learner.unfreeze()
learner.fit_one_cycle(3, slice(1e-6, 1e-4))
epoch train_loss valid_loss error_rate time
0 0.267663 0.217494 0.071719 00:34
1 0.240454 0.205031 0.072395 00:34
2 0.214869 0.204856 0.069012 00:35

So validation loss got better overall, error_rate flattened.

learner.recorder.plot_loss()

Half-precision training

We’ll speed up training by using half-precision training. We can do it by passing `to_fp16’:

from fastai.callback.fp16 import *
learner = vision_learner(dls, resnet18, metrics=error_rate).to_fp16()
learner.fine_tune(6, freeze_epochs=3)
epoch train_loss valid_loss error_rate time
0 0.374304 0.270750 0.094046 00:27
1 0.378627 0.319606 0.105548 00:27
2 0.292685 0.285336 0.093369 00:27
3 0.203631 0.263839 0.088633 00:27
4 0.145154 0.263045 0.087280 00:27
5 0.119077 0.252303 0.084574 00:27

This was resnet18, let’s try resnet50:

from fastai.callback.fp16 import *
learner = vision_learner(dls, resnet50, metrics=error_rate).to_fp16()
learner.fine_tune(6, freeze_epochs=3)
epoch train_loss valid_loss error_rate time
0 0.267938 0.229196 0.073072 00:58
1 0.314602 0.392396 0.100812 00:58
2 0.252791 0.325749 0.098106 00:58
3 0.168045 0.223274 0.065629 00:59
4 0.093663 0.190344 0.056834 00:58
5 0.059073 0.192047 0.056834 00:58

Clearly an improvement!